Many roleplaying conventions hold charity auctions, which are often very strongly supported by the convention-goers.
Ogre Cave reports that Gen Con (a major roleplaying convention) raised over $17,000 at its annual charity auction, held in honour of (recently deceased) Gary Gygax.
Their chosen charity, Christian Children’s Fund (apparently a favorite of Gygax) learned that sales of Dungeons & Dragons materials were part of the auction and turned the money down.
Apparently saving children isn't really so important after all, if the money might have come from people who like to roll dice and make up stories.
Fisher House Foundation accepted the evil, tainted money, apparently without reservations. So far, the unstinting wrath of the almighty has failed to fall upon them, but obviously it's only a matter of time.
Monday, October 27, 2008
Southern Comfort?
I no more envy people that find faith comforting than I envy people that find a double shot of whiskey in their morning coffee comforting.
... I might find it understandable, but that's not at all the same thing.
... I might find it understandable, but that's not at all the same thing.
Saturday, October 25, 2008
Speed reading
Mid-last week I was asked if I could teach a segment of a subject.
I said "I'll need to check, but it will probably be okay. When does it start?"
"In a week."
Nice to have, you know, preparation time.
I said "I'll need to check, but it will probably be okay. When does it start?"
"In a week."
Nice to have, you know, preparation time.
Friday, October 24, 2008
Wednesday, October 22, 2008
You can only rev your base up enough to vote once
What's the point in going to the extreme end of your base over and over, while losing the undecideds, independents and any crossover Dems?
I mean, really? If you rev up your base enough to vote, and you're doing public financing anyway, every time you go back to the well, you're losing votes. And its not just McCain that doesn't seem to understand the message.
The deluge of money to Tinklenberg in the MN house race, and the swing in the NC senate race from Dole to Hagan (Dole was ahead until she started attacking Hagan over actually meeting with atheists) seem to indicate that sufficiently extreme reactions will motivate people to support your opponent much more than it helps you.
So right wingnuts, here's the lowdown: once you convince your base to actually go out and vote for you, there's little point in going further - if you get them three times as worked up, they don't get to vote for you three times. They just get out the white hoods and the burning crosses. And then the decent, ordinary people, a whole heaping lot of them, suddenly start finding a few bucks for the other guy...
What's up with that? Has the right wing lost the ability to count to one?
I mean, really? If you rev up your base enough to vote, and you're doing public financing anyway, every time you go back to the well, you're losing votes. And its not just McCain that doesn't seem to understand the message.
The deluge of money to Tinklenberg in the MN house race, and the swing in the NC senate race from Dole to Hagan (Dole was ahead until she started attacking Hagan over actually meeting with atheists) seem to indicate that sufficiently extreme reactions will motivate people to support your opponent much more than it helps you.
So right wingnuts, here's the lowdown: once you convince your base to actually go out and vote for you, there's little point in going further - if you get them three times as worked up, they don't get to vote for you three times. They just get out the white hoods and the burning crosses. And then the decent, ordinary people, a whole heaping lot of them, suddenly start finding a few bucks for the other guy...
What's up with that? Has the right wing lost the ability to count to one?
Monday, October 20, 2008
Statistics as philosophy
This post is related to a point I often try to make (not that I am completely of a mind with the author, but much of what he's saying I identify with).
Fundamentally, statistics is different from mathematics, though it uses the tools of mathematics. Mathematics helps with the "what" (such as "given I want to measure this, what do I do?", but the "why" (such as in the sense of "why work that out, rather than something else") is somewhere other than mathematics.
This point is often lost on otherwise highly competent people. I have seen many good mathematicians come a cropper on it. Some of the worst explanations of statistics I have ever seen come not from people who have trouble with the mathematics in it, but from people who have no trouble with the mathematics at all. (I could name names, but I am feeling generous today.)
And it's often like that with students - I see it a lot. As a student, I had a similar experience to the poster I linked to - I was - manipulation-wise - reasonably competent at statistics. I could do the calculations, if it was reasonably clear what calculations were required. But I did two years of it and still didn't comprehend it. I didn't even comprehend that there was something to comprehend - after all, I could pass the subjects okay, so I must have 'got it' okay, even though it seemed sort of wishy-washy to me. But actually I didn't get it at all. It wasn't until I was some doing third-year subjects that it eventually clicked. I suddenly understood what all the previous subjects had been about. I got it. The material I had learned wasn't a bunch of different stuff all lumped together that was done the way it was purely by convention (though there are no shortage of conventions) - there was, in fact, a coherence to it all. It was all of a thing, it fitted together; the stuff I'd learned was the result of a limited collection of concepts applied to different problems. I could actually begin applying my understanding outside my direct learning, to problems I'd not seen before. I had a framework within which each new piece of knowledge fitted in with everything else.
I'm not certain how to even convey this understanding, though I try. Students recognise that I'm passionate, at least (or so they tell me), though I'm not sure that the "why" always comes across to more than a very few of them.
Fundamentally, statistics is different from mathematics, though it uses the tools of mathematics. Mathematics helps with the "what" (such as "given I want to measure this, what do I do?", but the "why" (such as in the sense of "why work that out, rather than something else") is somewhere other than mathematics.
This point is often lost on otherwise highly competent people. I have seen many good mathematicians come a cropper on it. Some of the worst explanations of statistics I have ever seen come not from people who have trouble with the mathematics in it, but from people who have no trouble with the mathematics at all. (I could name names, but I am feeling generous today.)
And it's often like that with students - I see it a lot. As a student, I had a similar experience to the poster I linked to - I was - manipulation-wise - reasonably competent at statistics. I could do the calculations, if it was reasonably clear what calculations were required. But I did two years of it and still didn't comprehend it. I didn't even comprehend that there was something to comprehend - after all, I could pass the subjects okay, so I must have 'got it' okay, even though it seemed sort of wishy-washy to me. But actually I didn't get it at all. It wasn't until I was some doing third-year subjects that it eventually clicked. I suddenly understood what all the previous subjects had been about. I got it. The material I had learned wasn't a bunch of different stuff all lumped together that was done the way it was purely by convention (though there are no shortage of conventions) - there was, in fact, a coherence to it all. It was all of a thing, it fitted together; the stuff I'd learned was the result of a limited collection of concepts applied to different problems. I could actually begin applying my understanding outside my direct learning, to problems I'd not seen before. I had a framework within which each new piece of knowledge fitted in with everything else.
I'm not certain how to even convey this understanding, though I try. Students recognise that I'm passionate, at least (or so they tell me), though I'm not sure that the "why" always comes across to more than a very few of them.
Thursday, October 9, 2008
Monday, October 6, 2008
Happy Happy Joy Joy
I am one happy blogger. I have completely sorted out a little mathematical problem that's been plaguing me for ages. It's one where I already knew the result, but all the proofs I could construct were either too embarrassingly clunky to use (I mean, really, really awful), or elegant but handwavy in one place.
I realized last week we really needed this result for something I'm working on with my research student. I sat and thought about it for a while today and finally noticed that the one remaining bit of argument we needed to make was obvious if you just recast the whole problem as a count from a thinned Poisson process. The crazy thing was my old handwavy argument was in effect already doing that, I just had failed to recognize it for what it was. Now that it's been set up in the right way, all the handwavy aspects drop away, and a nice clean half-page argument based on already-known results establishes the result we need.
This is one of those moments when after the fact everything is so obvious that I feel inadequate for not having seen it much earlier, but for the moment the joy is undiminished, because what this small step gets us to is something dramatic (assuming showing a bunch of well-known-in-their-application-area people that what they've been saying and doing is completely wrong is dramatic).
I realized last week we really needed this result for something I'm working on with my research student. I sat and thought about it for a while today and finally noticed that the one remaining bit of argument we needed to make was obvious if you just recast the whole problem as a count from a thinned Poisson process. The crazy thing was my old handwavy argument was in effect already doing that, I just had failed to recognize it for what it was. Now that it's been set up in the right way, all the handwavy aspects drop away, and a nice clean half-page argument based on already-known results establishes the result we need.
This is one of those moments when after the fact everything is so obvious that I feel inadequate for not having seen it much earlier, but for the moment the joy is undiminished, because what this small step gets us to is something dramatic (assuming showing a bunch of well-known-in-their-application-area people that what they've been saying and doing is completely wrong is dramatic).
Subscribe to:
Posts (Atom)